15. Evaluate $\int \frac{1}{a \sin x + b \cos x} dx$.

5 × 7 = 35

14. Show that the points (0, 0), $(5, \pi/8)$, $(5, 7\pi/8)$ form an equilateral triangle.

17. Solve $(1+x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0$.

SECTION - C LONG ANSWER TYPE QUESTIONS

16. Solve $(xy^2 + x) dx + (yx^2 + y) dy = 0$.

Attempt any 5 questions. Each question carries 7 marks.

- **18.** If $y = \sin(m \sin^{-1} x)$ then show that $(y_{n+2})_0 = (n^2 m^2)(y_n)_0$.
- 19. Show that the condition that the pair of tangents drawn to the circle $x^{2} + y^{2} + 2gx + 2fy + c = 0$ from (g, f) may be right angles is $g^{2} + f^{2} + c = 0$.
- 20. Find the equation to the circle whose diameter is the common chord of the circles $x^{2} + y^{2} + 2x + 3y + 1 = 0$, $x^{2} + y^{2} + 4x + 3y + 2 = 0$. Find also the length of the common chord.
- **21.** Show that the equation of a hyperbola in the standard form is $\frac{x^2}{c^2} \frac{y^2}{k^2} = 1$.
- **22.** Evaluate $\int \frac{2x+5}{\sqrt{x^2-2x+10}} dx.$
- **23.** Evaluate $\int_{1}^{\pi} \frac{x \sin x}{1 + \sin x} dx.$
- **24.** Find the area enclosed between the curve $y = x^2 5x$, y = 4 2x.